Conditional Statements Lecture 3 Section 2.2

Robb T. Koether

Hampden-Sydney College

Fri, Jan 17, 2014

Robb T. Koether (Hampden-Sydney College)

Conditional Statements

Fri, Jan 17, 2014 1 / 26

э

DQC

イロト イポト イヨト イヨト

2 The Contrapositive

Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

Conditional Statements

2 The Contrapositive

3 Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

э

< ロト < 同ト < ヨト < ヨト

• A conditional statement is a statement of the form

$$p \rightarrow q$$
.

- *p* is the hypothesis.
- q is the conclusion.
- Read $p \rightarrow q$ as "*p* implies *q*" or "if *p*, then *q*."
- The idea is that the truth of *p* implies the truth of *q* (but nothing more).

• Which of the following scenarios are consistent with the statement "If I win the lottery, then I will buy a Mercedes Benz."

 Which of the following scenarios are consistent with the statement "If I win the lottery, then I will buy a Mercedes Benz." Scenario 1: I win the lottery and I buy a Mercedes Benz. Which of the following scenarios are consistent with the statement "If I win the lottery, then I will buy a Mercedes Benz." Scenario 1: I win the lottery and I buy a Mercedes Benz. Scenario 2: I win the lottery and I do not buy a Mercedes Benz. Which of the following scenarios are consistent with the statement "If I win the lottery, then I will buy a Mercedes Benz." Scenario 1: I win the lottery and I buy a Mercedes Benz. Scenario 2: I win the lottery and I do not buy a Mercedes Benz. Scenario 3: I do not win the lottery and I do not buy a Mercedes Benz.

- Which of the following scenarios are consistent with the statement "If I win the lottery, then I will buy a Mercedes Benz."
 - Scenario 1: I win the lottery and I buy a Mercedes Benz.
 - Scenario 2: I win the lottery and I do not buy a Mercedes Benz.
 - Scenario 3: I do not win the lottery and I do not buy a Mercedes Benz.
 - Scenario 4: I do not win the lottery and I buy a Mercedes Benz.

Truth Table for the Conditional

- $p \rightarrow q$ is true if p is false or q is true.
- $p \rightarrow q$ is false if p is true and q is false.
- Thus, $p \rightarrow q$ is logically equivalent to $\sim p \lor q$.

< A b

Conditional Statements

2 The Contrapositive

3 Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

∃ ► < ∃ ►</p>

- The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$.
- The statements p → q and ~ q →~ p are logically equivalent. (Prove it!)

イロト 不得 トイヨト イヨト 二日

The Converse and the Inverse

$$p \rightarrow q$$
 $q \rightarrow p$

$$\sim p \rightarrow \sim q \qquad \qquad \sim q \rightarrow \sim p$$

Four conditionals.

Robb T. Koether (Hampden-Sydney College)

Conditional Statements

Fri, Jan 17, 2014 9 / 26

æ

イロト イヨト イヨト イヨト

$$p \rightarrow q$$
 Converses $q \rightarrow p$

$$\sim p \rightarrow \sim q$$
 \longleftarrow $\sim q \rightarrow \sim p$

The converse of $p \rightarrow q$ is $q \rightarrow p$

Robb T. Koether (Hampden-Sydney College)

Conditional Statements

Fri, Jan 17, 2014 9 / 26

DQC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

The Converse and the Inverse

The inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$

Robb T. Koether (Hampden-Sydney College)

Conditional Statements

Fri, Jan 17, 2014 9 / 26

- 3

イロト イポト イヨト イヨト

The Converse and the Inverse

The contrapositive of p ightarrow q is $\sim q ightarrow \sim p$

Robb T. Koether (Hampden-Sydney College)

Conditional Statements

Fri. Jan 17, 2014 9 / 26

イロト 不得 トイヨト イヨト 二日

Conditional Statements

2 The Contrapositive

Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

∃ ► 4 Ξ

< 17 ▶

Conditional Statements

2 The Contrapositive

Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

∃ ► 4 Ξ

4 A b

- The biconditional of *p* and *q* is denoted $p \leftrightarrow q$.
- Read $p \leftrightarrow q$ as "*p* if and only if *q*."
- $p \leftrightarrow q$ is logically equivalent to

$$(p
ightarrow q) \land (q
ightarrow p).$$

It is also logically equivalent to

$$(\sim p \lor q) \land (\sim q \lor p)$$

and

$$(p \land q) \lor (\sim p \land \sim q).$$

3

The 16 at 16

< 61 b

The Biconditional

Robb T. Koether (Hampden-Sydney College)

Conditional Statements

Fri, Jan 17, 2014 13 / 26

2

590

イロト イヨト イヨト イヨト

Conditional Statements

2 The Contrapositive

Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

∃ ► 4 Ξ

< 17 ▶

- The exclusive-or of p and q is denoted $p \oplus q$.
- $p \oplus q$ means "one or the other, but not both."
- $p \oplus q$ is logically equivalent to

$$(p \lor q) \land \sim (p \land q)$$

and

$$(p \land \sim q) \lor (\sim p \land q)$$

and

$$\sim (p \leftrightarrow q).$$

Robb T. Koether (Hampden-Sydney College)

3

イロト イポト イヨト イヨト

Exclusive-Or

Fri, Jan 17, 2014 16 / 26

990

イロト イポト イヨト イヨト 二日

2 The Contrapositive

Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

∃ ► 4 Ξ

< 17 ▶

- The NAND of p and q is denoted $p \mid q$.
- The operator | is also called the Scheffer stroke.

∃ ► 4 Ξ

< 4 →

- The statement *p* | *q* means "not both *p* and *q*."
- $p \mid q$ is logically equivalent to $\sim (p \land q)$.

3

イロト イポト イヨト イヨト

• The three basic operators (and, or, not) may be defined in terms of NAND.

$$\sim p \equiv p \mid p.$$

 $p \land q \equiv (p \mid q) \mid (p \mid q).$
 $p \lor q \equiv (p \mid p) \mid (q \mid q).$

Prove it!

3

< ロト < 同ト < ヨト < ヨト

2 The Contrapositive

Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

Assignment

∃ ► 4 Ξ

< 17 ▶

The NOR Operator

- The NOR of *p* and *q* is denoted $p \downarrow q$.
- The operator \downarrow is also called the Pierce arrow.

< 17 ▶

∃ ► 4 Ξ

- The statement $p \downarrow q$ means "neither p nor q."
- $p \downarrow q$ is logically equivalent to $\sim (p \lor q)$.

3

イロト イポト イヨト イヨト

• The three basic operators (and, or, not) may be defined in terms of NOR.

$$\sim p \equiv p \downarrow p.$$

 $p \lor q \equiv (p \downarrow q) \downarrow (p \downarrow q).$
 $p \land q \equiv (p \downarrow p) \downarrow (q \downarrow q).$

Prove it!

3

< ロト < 同ト < ヨト < ヨト

Conditional Statements

2 The Contrapositive

3 Other Operators

- The Biconditional
- The Exclusive-Or
- The NAND Operator
- The NOR Operator

4 Assignment

э

4 ∃ > < ∃ >

Assignment

- Read Section 2.2, pages 39 48.
- Exercises 2, 5, 6, 12, 13, 17, 18, 37, 41, 42, 46, page 49.

Robb T. Koether (Hampden-Sydney College)

3

イロト イポト イヨト イヨト